
1

Armstrong State University
Engineering Studies

MATLAB Marina – Exception Handling Primer

Prerequisites
The Exception Handling Primer assumes knowledge of the MATLAB IDE, MATLAB help,
arithmetic operations, built in functions, scripts, variables, arrays, logic expressions, conditional
structures, iteration, and functions. Material on these topics is covered in the MATLAB Marina
Introduction to MATLAB module, MATLAB Marina Variables module, MATLAB Marina Arrays
module, MATLAB Marina Logic Expressions module, MATLAB Marina Conditional Structures
module, MATLAB Marina Iteration module, and MATLAB Marina functions module.

Learning Objectives
1. Be able to use inline error handling to avoid run-time errors in program code segments and

functions.
2. Be able to use MATLAB’s exception handling (try-catch, error) to handle run-time errors in

program code segments and functions.

Terms
Important terms you will encounter in this module include: inline error handling, exception,
exception handling

MATLAB keywords and functions
try, catch, error

Exception Handling
An exception is an unexpected error. Exception (error) handling code can be interspersed with
program code and thus handle errors where they occur (for example asking a user for a positive
integer and then verifying that the integer entered is positive). Some common errors: failing to
obtain requested memory, array subscript out of bounds, invalid function parameters,
arithmetic overflow, and divide by zero.

Program generated errors (often from bad data) can be dealt with by: ignoring the error and
either generating a bad result or letting program terminate, set some indicator that an error
occurred and let another part of the program deal with it, or dealing with the error where it
occurs. To deal with errors, inline error handling code is often used. The inline error handling
code is usually a conditional statement to check for the error either by itself or as part of a try
catch block. For functions, error handling can be done with a wrapper function. Inline error
handling has the advantage that it is relatively easy to determine that proper error checking is
being done but the inline error handling code typically makes the program code more difficult
to understand and maintain.

2

The MATLAB code of Figure 1a shows the use of an inline if-else to detect a divide by zero error.

MATLAB has a try catch construct for exception handling. Code that might generate errors

is enclosed in a try block. When an error is detected, an exception can be thrown using the
error function. When an exception is generated, the try block is halted and depending on
how the program or function has been designed to respond to the error, MATLAB either enters
a catch block to handle the exception or exits the program. MATLAB does not distinguish
between types of exceptions but the error function allows one to pass on information about

the type of exception thrown. The simplest form of the error function is the one parameter
version, error('msgString'). This version throws an exception and sets the exception

message to the string argument of the error function.

The catch block can then either generically handle all exceptions or have specific operations for
different types of exceptions. The exception in the catch statement is a variable name that will
be assigned the exception object that was last thrown. One can also use the try catch
construct to handle exceptions generated by MATLAB built functions.

The MATLAB code of Figure 1b shows the use of an inline if-else to detect a divide by zero error
and throw an exception if an error is detected. The error function will throw an exception

but without a catch block the program is exited and the error message is displayed.

The MATLAB code of Figure 1c shows the use of exception handling (try-catch) to detect and
handle a divide by zero error. In the MATLAB program of Figure 1c, if num2 is zero, an
exception with the error message “divide by zero” is thrown by the error function. Since
there is a catch block, the program enters the catch block rather than exiting the program. The
thrown exception is saved in the variable of the catch statement, in this example err. In the
catch block, the result num3 is set to not a number (NaN) and the exception message is
extracted and displayed.

% read in two numbers

num1 = input('Enter number 1: ');

num2 = input('Enter number 2 (not 0): ');

% perform division

if (num2 == 0)

 num3 = NaN;

 disp('divide by zero');

else

 num3 = num1/num2;

end

disp(num3);

Figure 1a, Exception Handling Using Inline if-else for Divide by Zero

3

Wrapper Functions
Since recursive functions call clones of themselves, if the error handling is inline code, it will be
executed every time the recursive function is called. This degrades performance especially
when there is a large number of recursive calls. A wrapper function allows the error handling to
be done once during the first call. The wrapper function then calls a local function that actually
performs the function operation.

Figure 2 shows the recursive Fibonacci function with an added wrapper function to handle
values of n less than zero. One might also want to ensure that n is an integer.

% read in two numbers

num1 = input('Enter number 1: ');

num2 = input('Enter number 2 (not 0): ');

% perform division

if (num2 == 0)

 error('divide by zero');

else

 num3 = num1/num2;

end

disp(num3)

Figure 1b, Error Handling Using Inline if-else for Divide by Zero

% read in two numbers

num1 = input('Enter number 1: ');

num2 = input('Enter number 2 (not 0): ');

% perform division

try

 if (num2 == 0)

 error('divide by zero');

 end

 num3 = num1/num2;

 disp(num3)

catch err

 num3 = NaN;

 disp(err.message);

end

Figure 1c, Exception Handling for Divide by Zero

4

The function filename must match the wrapper function name. The local function
localFibonacci can only be called by the wrapper function and is not accessible outside of

the fibonacciRecursive function.

Last modified Thursday, March 05, 2015

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

function result = fibonacciRecursive(n)

% wrapper function for error handling

if (n >= 0)

 result = localFibonacci(n);

else

 result = [];

end

end % end wrapper function

% local Fibonacci function

function localResult = localFibonacci(n)

if (n == 0)

 localResult = 0;

elseif (n == 1)

 localResult = 1;

else

 localResult = localFibonacci(n-1) + localFibonacci(n-2);

end

end % end localFibonacci

Figure 2, Recursive Solution to Fibonacci Problem with Wrapper Function

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

